Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.827
Filtrar
1.
Commun Biol ; 7(1): 415, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580843

RESUMO

The ten-eleven-translocation family of proteins (TET1/2/3) are epigenetic regulators of gene expression. They regulate genes by promoting DNA demethylation (i.e., catalytic activity) and by partnering with regulatory proteins (i.e., non-catalytic functions). Unlike Tet1 and Tet2, Tet3 is not expressed in mouse embryonic stem cells (ESCs) but is induced upon ESC differentiation. However, the significance of its dual roles in lineage specification is less defined. By generating TET3 catalytic-mutant (Tet3m/m) and knockout (Tet3-/-) mouse ESCs and differentiating them to neuroectoderm (NE), we identify distinct catalytic-dependent and independent roles of TET3 in NE specification. We find that the catalytic activity of TET3 is important for activation of neural genes while its non-catalytic functions are involved in suppressing mesodermal programs. Interestingly, the vast majority of differentially methylated regions (DMRs) in Tet3m/m and Tet3-/- NE cells are hypomethylated. The hypo-DMRs are associated to aberrantly upregulated genes while the hyper-DMRs are linked to downregulated neural genes. We find the maintenance methyltransferase Dnmt1 as a direct target of TET3, which is downregulated in TET3-deficient NE cells and may contribute to the increased DNA hypomethylation. Our findings establish that the catalytic-dependent and -independent roles of TET3 have distinct contributions to NE specification with potential implications in development.


Assuntos
Dioxigenases , Animais , Camundongos , Diferenciação Celular/genética , Dioxigenases/genética , Dioxigenases/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Placa Neural/metabolismo
2.
Nat Commun ; 15(1): 2825, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561362

RESUMO

Ten-eleven translocation (TET) 2 is an enzyme that catalyzes DNA demethylation to regulate gene expression by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine, functioning as an essential epigenetic regulator in various biological processes. However, the regulation and function of TET2 in adipocytes during obesity are poorly understood. In this study, we demonstrate that leptin, a key adipokine in mammalian energy homeostasis regulation, suppresses adipocyte TET2 levels via JAK2-STAT3 signaling. Adipocyte Tet2 deficiency protects against high-fat diet-induced weight gain by reducing leptin levels and further improving leptin sensitivity in obese male mice. By interacting with C/EBPα, adipocyte TET2 increases the hydroxymethylcytosine levels of the leptin gene promoter, thereby promoting leptin gene expression. A decrease in adipose TET2 is associated with obesity-related hyperleptinemia in humans. Inhibition of TET2 suppresses the production of leptin in mature human adipocytes. Our findings support the existence of a negative feedback loop between TET2 and leptin in adipocytes and reveal a compensatory mechanism for the body to counteract the metabolic dysfunction caused by obesity.


Assuntos
Dioxigenases , Leptina , Animais , Humanos , Masculino , Camundongos , Adipócitos/metabolismo , Peso Corporal , Dioxigenases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retroalimentação , Leptina/metabolismo , Mamíferos/metabolismo , Obesidade/genética , Obesidade/metabolismo
3.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612756

RESUMO

Carotenoids are essential nutrients for humans and animals, and carotenoid coloration represents an important meat quality parameter for many farmed animals. Increasingly, studies have demonstrated that vertebrate carotenoid cleavage oxygenases (CCOs) are essential enzymes in carotenoid metabolism and are therefore potential candidate genes for improving carotenoid deposition. However, our understanding of carotenoid bioavailability and CCOs functions in invertebrates, particularly marine species, is currently quite limited. We previously identified that a CCO homolog, PyBCO-like 1, was the causal gene for carotenoid coloration in the 'Haida golden scallop', a variety of Yesso scallop (Patinopecten yessoensis) characterized by carotenoid enrichment. Here, we found that another CCO-encoding gene named PyBCO2 (ß-carotene oxygenase 2) was widely expressed in P. yessoensis organs/tissues, with the highest expression in striated muscle. Inhibiting BCO2 expression in P. yessoensis through RNA interference led to increased carotenoid (pectenolone and pectenoxanthin) deposition in the striated muscle, and the color of the striated muscle changed from white to light orange. Our results indicate that PyBCO2 might be a candidate gene used for improving carotenoid content in normal Yesso scallops, and also in 'Haida golden scallops'.


Assuntos
Dioxigenases , Pectinidae , Animais , Humanos , beta Caroteno , Músculo Esquelético , Carotenoides , Pectinidae/genética , Dioxigenases/genética
4.
J Am Chem Soc ; 146(15): 10381-10392, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573229

RESUMO

DNA cross-links severely challenge replication and transcription in cells, promoting senescence and cell death. In this paper, we report a novel type of DNA interstrand cross-link (ICL) produced as a side product during the attempted repair of 1,N6-ethenoadenine (εA) by human α-ketoglutarate/Fe(II)-dependent enzyme ALKBH2. This stable/nonreversible ICL was characterized by denaturing polyacrylamide gel electrophoresis analysis and quantified by high-resolution LC-MS in well-matched and mismatched DNA duplexes, yielding 5.7% as the highest level for cross-link formation. The binary lesion is proposed to be generated through covalent bond formation between the epoxide intermediate of εA repair and the exocyclic N6-amino group of adenine or the N4-amino group of cytosine residues in the complementary strand under physiological conditions. The cross-links occur in diverse sequence contexts, and molecular dynamics simulations rationalize the context specificity of cross-link formation. In addition, the cross-link generated from attempted εA repair was detected in cells by highly sensitive LC-MS techniques, giving biological relevance to the cross-link adducts. Overall, a combination of biochemical, computational, and mass spectrometric methods was used to discover and characterize this new type of stable cross-link both in vitro and in human cells, thereby uniquely demonstrating the existence of a potentially harmful ICL during DNA repair by human ALKBH2.


Assuntos
Adenina/análogos & derivados , Dioxigenases , Ácidos Cetoglutáricos , Humanos , Dioxigenases/metabolismo , DNA/química , Reparo do DNA , Compostos Ferrosos , Adutos de DNA , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 335-341, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660833

RESUMO

OBJECTIVE: To analyze the occurrence of concomitant gene mutations in cytogenetically normal acute myeloid leukemia (CN-AML) patients with CEBPA mutation and its impact on the clinical characteristics and prognosis of the patients. METHODS: 151 newly diagnosed patients with CN-AML in the Second Hospital of Shanxi Medical University from June 2013 to June 2020 were analyzed retrospectively. 34 common genetic mutations associated with hematologic malignancies were detected by next-generation sequencing technology. The occurrence of concomitant gene mutations in patients with CEBPA positive and negative groups was compared, and the correlation between concomitant mutations in different functional groups and the clinical characteristics and prognosis of CN-AML patients with CEBPA mutation was analyzed. RESULTS: In 151 patients with CN-AML, 55 (36.42%) were positive for CEBPA mutation (including 36 cases of CEBPAdm and 19 cases of CEBPAsm), of which 41 (74.55%) had co-mutations with other genes. The main mutated genes were GATA2 (25.45%, 14/55), TET2 (21.82%, 12/55), FLT3 (20.00%, 11/55), NRAS (12.73%, 7/55) and WT1 (9.09%, 9/55), etc. Some cases had two or more concomitant gene mutations. Grouping the mutant genes according to their functions showed that CEBPA+ group had lower mutation rates of histone methylation (P =0.002) and chromatin modification genes (P =0.002, P =0.033), and higher mutation rates of transcription factors (P =0.037) than CEBPA- group. In 55 patients with CEBPA+ CN-AML, the platelet count at diagnosis in signaling pathway gene mutation-positive group was lower than that in the mutation-negative group (P =0.005), the proportion of bone marrow blasts in transcription factor mutation-positive group was higher than that in the mutation-negative group (P =0.003), and the onset age in DNA methylation gene mutation-positive group and chromatin modifier mutation-positive group was older than that in the mutation-negative group, respectively (P =0.002, P =0.008). DFS of CEBPA+ CN-AML patients in signaling pathway gene mutation group was shorter than that in signaling pathway gene mutation-negative group (median DFS: 12 months vs not reached) (P =0.034). Compared with DNA methylation gene mutation-negative group, CEBPA+ CN-AML patients with DNA methylation gene mutation had lower CR rate (P =0.025) significantly shorter OS and DFS (median OS: 20 months vs not reached, P =0.006; median DFS: 15 months vs not reached, P =0.049). OS in patients with histone methylation gene mutation was significantly shorter than that in the histone methylation gene mutation-negative group (median OS: 12 months vs 40 months) (P =0.008). Multivariate analysis of prognostic factors showed that the proportion of bone marrow blasts (P =0.046), concomitant DNA methylation gene mutation (P =0.006) and histone methylation gene mutation (P =0.036) were independent risk factors affecting the prognosis. CONCLUSION: CN-AML patients with CEBPA mutation have specific concomitant gene profile, and the concomitant mutations of different functional genes have a certain impact on the clinical characteristics and prognosis of the patients.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Leucemia Mieloide Aguda , Mutação , Humanos , Leucemia Mieloide Aguda/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Estudos Retrospectivos , Prognóstico , Dioxigenases , Fator de Transcrição GATA2/genética , Proteínas de Ligação a DNA/genética , Proteínas Proto-Oncogênicas/genética , Proteínas WT1/genética , Masculino , Feminino , Relevância Clínica
6.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 327-334, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38660832

RESUMO

OBJECTIVE: To investigate the clinical characteristics, coexisting gene mutations and prognosis of acute myeloid leukemia (AML) patients with GATA2 gene mutation. METHODS: The clinical data of 370 newly diagnosed AML patients treated in our hospital from January 2008 to January 2021 was analyzed retrospectively, the next-generation sequencing technology was used to detect the mutated genes in those patients. The clinical characteristics of AML patients with GATA2 mutations, the co-mutated genes of GATA2 mutations, and the effect of GATA2 mutation on prognosis were analyzed. RESULTS: A total of 23 patients (6.2%) with GATA2 mutation was detected in 370 AML patients. Compared with GATA2 non-mutation group, patients in GATA2 mutation group were mostly normal karyotypes (P =0.037) and in low-risk cytogenetic stratification (P =0.028). The incidence of CEBPAdm and NRAS in GATA2 mutation group was significantly higher than that in GATA2 non-mutation group (P =0.010, P =0.009). There were no statistically significant differences between the two groups in terms of sex, age, white blood cell count (WBC), platelet count, hemoglobin, bone marrow (BM) blast, induction chemotherapy regimen and CR rate (P >0.05). Among the 23 patients with GATA2 mutation, the most common co-mutated genes were CEBPAdm, NRAS (both 39.1%), NPM1, FLT3, TET2, WT1 (all 17.4%), ASXL1 and IDH1 (both 13.0%). Survival analysis showed that there was no statistical difference in 5-year overall survival (OS) and leukemia-free survival (LFS) rates between patients with and without GATA2 mutations in whole cohort (n=370) (P =0.306, P =0.308). Among 306 patients without CEBPAdm, the 5-year OS and LFS rates in GATA2 mutation group showed an increasing trend compared with GATA2 non-mutation group, but the difference was not statistically significant (P =0.092, P =0.056). Among 64 patients with CEBPAdm, there was no statistically significant difference in 5-year OS rate between the GATA2 mutation group and the GATA2 non-mutation group (P =0.104), but the 5-year LFS rate of the GATA2 mutation group was significantly decreased (P =0.047). Among the 23 patients with GATA2 mutation, 16 cases received the "3+7" induction regimen, of which 12 cases received allogeneic hematopoietic stem cell transplantation (allo-HSCT); 7 cases received the "DCAG" induction regimen, of which 3 cases received allo-HSCT. The CR rate was not statistically different between the "3+7" regimen group and the "DCAG" regimen group (P =1.000). The 5-year OS rate and LFS rate in the transplantation group were significantly higher than the chemotherapy group (P =0.021, P =0.020). CONCLUSION: GATA2 mutation is more common in AML patients with normal karyotype and low-risk cytogenetic stratification, and it is significantly associated with CEBPAdm and NRAS co-mutations. The prognostic significance of GATA2 is influenced by CEBPAdm. The choice of "3+7" or "DCAG" induction regimen in patients with GATA2 mutation does not affect their CR rate, while the choice of allo-HSCT can significantly improved the prognosis compared with chemotherapy only.


Assuntos
Proteínas de Ligação a DNA , Fator de Transcrição GATA2 , Leucemia Mieloide Aguda , Proteínas de Membrana , Mutação , Nucleofosmina , Proteínas Repressoras , Humanos , Fator de Transcrição GATA2/genética , Leucemia Mieloide Aguda/genética , Prognóstico , Estudos Retrospectivos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Dioxigenases , GTP Fosfo-Hidrolases/genética , Masculino , Feminino
7.
Signal Transduct Target Ther ; 9(1): 65, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461173

RESUMO

Despite epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have shown remarkable efficacy in patients with EGFR-mutant non-small cell lung cancer (NSCLC), acquired resistance inevitably develops, limiting clinical efficacy. We found that TET2 was poly-ubiquitinated by E3 ligase CUL7FBXW11 and degraded in EGFR-TKI resistant NSCLC cells. Genetic perturbation of TET2 rendered parental cells more tolerant to TKI treatment. TET2 was stabilized by MEK1 phosphorylation at Ser 1107, while MEK1 inactivation promoted its proteasome degradation by enhancing the recruitment of CUL7FBXW11. Loss of TET2 resulted in the upregulation of TNF/NF-κB signaling that confers the EGFR-TKI resistance. Genetic or pharmacological inhibition of NF-κB attenuate the TKI resistance both in vitro and in vivo. Our findings exemplified how a cell growth controlling kinase MEK1 leveraged the epigenetic homeostasis by regulating TET2, and demonstrated an alternative path of non-mutational acquired EGFR-TKI resistance modulated by TET2 deficiency. Therefore, combined strategy exploiting EGFR-TKI and inhibitors of TET2/NF-κB axis holds therapeutic potential for treating NSCLC patients who suffered from this resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Dioxigenases , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Dioxigenases/genética , Proteínas de Ligação a DNA/genética , Receptores ErbB , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , NF-kappa B/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , /uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética
8.
Aging (Albany NY) ; 16(5): 4327-4347, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38451188

RESUMO

The 4-Hydroxyphenylpyruvate Dioxygenase-Like (HPDL) protein plays a crucial role in safeguarding cells from oxidative stress by orchestrating metabolic reprogramming. New research suggests that HPDL is considerably increased in pancreatic ductal adenocarcinoma, although its impact on cancer immunotherapy is still unclear. Pancancer transcriptional data were obtained from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression datasets. The cBioPortal webtool was utilized to examine genomic changes in different cancer types. The prognostic significance of HPDL in pancancer was evaluated using univariate Cox regression analysis. Extensive utilization of the CTRP and PRISM databases was performed to forecast potential medications that specifically target HPDL in LUAD. In summary, studies were conducted to evaluate the impact of HPDL on the proliferation and movement of LUAD cells using loss-of-function experiments. HPDL is expressed excessively in a wide variety of cancer types, indicating its prognostic and predictive value. Moreover, we emphasized the strong correlation between HPDL and indicators of immune stimulation, infiltration of immune cells, and expression of immunoregulators. The remarkable finding of the HPDL was its capacity to precisely anticipate responses to cancer therapies using anti-PDL1 and anti-PD1 antibodies among individuals. Moreover, HPDL can function as a predictive marker for specific inhibitors in instances of cancer. Suppression of HPDL resulted in reduced growth and movement of LUAD cells. To summarize, our results suggest that HPDL acts as a prospective predictor of outcomes and a positive indication of response to immunotherapy in patients undergoing treatment with immune checkpoint inhibitors (ICIs).


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Dioxigenases , Neoplasias Pancreáticas , Humanos , 4-Hidroxifenilpiruvato Dioxigenase/genética , Prognóstico , Imunoterapia , Microambiente Tumoral
9.
Clin Epigenetics ; 16(1): 42, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491513

RESUMO

BACKGROUND: Congenital heart disease (CHD) is a prevalent congenital cardiac malformation, which lacks effective early biological diagnosis and intervention. MicroRNAs, as epigenetic regulators of cardiac development, provide potential biomarkers for the diagnosis and treatment of CHD. However, the mechanisms underlying miRNAs-mediated regulation of cardiac development and CHD malformation remain to be further elucidated. This study aimed to explore the function of microRNA-20b-5p (miR-20b-5p) in cardiac development and CHD pathogenesis. METHODS AND RESULTS: miRNA expression profiling identified that miR-20b-5p was significantly downregulated during a 12-day cardiac differentiation of human embryonic stem cells (hESCs), whereas it was markedly upregulated in plasma samples of atrial septal defect (ASD) patients. Our results further revealed that miR-20b-5p suppressed hESCs-derived cardiac differentiation by targeting tet methylcytosine dioxygenase 2 (TET2) and 5-hydroxymethylcytosine, leading to a reduction in key cardiac transcription factors including GATA4, NKX2.5, TBX5, MYH6 and cTnT. Additionally, knockdown of TET2 significantly inhibited cardiac differentiation, which could be partially restored by miR-20b-5p inhibition. CONCLUSIONS: Collectively, this study provides compelling evidence that miR-20b-5p functions as an inhibitory regulator in hESCs-derived cardiac differentiation by targeting TET2, highlighting its potential as a biomarker for ASD.


Assuntos
Dioxigenases , MicroRNAs , Humanos , Diferenciação Celular , Dioxigenases/genética , DNA/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
10.
Chem Biol Interact ; 393: 110950, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38479715

RESUMO

It is well known that anthracene is a persistent organic pollutant. Among the four natural polycyclic aromatic hydrocarbons (PAHs) degrading strains, Comamonas testosterone (CT1) was selected as the strain with the highest degradation efficiency. In the present study, prokaryotic transcriptome analysis of CT1 revealed an increase in a gene that encodes tryptophane-2,3-dioxygenase (T23D) in the anthracene and erythromycin groups compared to CK. Compared to the wild-type CT1 strain, anthracene degradation by the CtT23D knockout mutant (CT-M1) was significantly reduced. Compared to Escherichia coli (DH5α), CtT23D transformed DH5α (EC-M1) had a higher degradation efficiency for anthracene. The recombinant protein rT23D oxidized tryptophan at pH 7.0 and 37 °C with an enzyme activity of 2.42 ± 0.06 µmol min-1·mg-1 protein. In addition, gas chromatography-mass (GC-MS) analysis of anthracene degradation by EC-M1 and the purified rT23D revealed that 2-methyl-1-benzofuran-3-carbaldehyde is an anthracene metabolite, suggesting that it is a new pathway.


Assuntos
Comamonas testosteroni , Dioxigenases , Hidrocarbonetos Policíclicos Aromáticos , Comamonas testosteroni/genética , Dioxigenases/metabolismo , Triptofano , Antracenos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
11.
J Environ Manage ; 356: 120623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518494

RESUMO

The environmental pollution caused by azo dyes at high temperatures has become an urgent problem. However, little attention has been paid to decolorizing azo dyes by thermophilic consortiums. In this study, a thermophilic bacterial consortium (BCGR-T) mainly composed of two genera, namely, Caldibacillus (70.90%) and Aeribacillus (17.63%) was first enriched, which can decolorize Brilliant Crocein GR (BCGR) at high temperatures (50-75 °C), pH values of 6∼8, dye concentrations (100-400 mg/L) and salinities (1-5%, w/v). The enzyme activity results showed that the azoreductase activity was nearly 8.8 times that of the control (p < 0.01), and the intracellular lignin peroxidase was also highly expressed with enzyme activity of 5.64 U (min-1 mg-1 protein) (p < 0.05), indicated that both azoreductase and intracellular lignin peroxidase played an important part in the decolorization process. Furthermore, seven new intermediate metabolic products, including aniline, phthalic acid, 2-carboxy benzaldehyde, phenylacetic acid, benzoic acid, toluene, and 4-methyl-hexanoic acid, were identified. In addition, functional genes related with the azo dye decolorization, such as those encoding the azoreductase, laccase, FMN reductase, NADPH-/NADH-quinone oxidoreductases and NADPH-/NADH dehydrogenases, catechol dioxygenase, homogentisate 1,2-dioxygenase, protocatechuate 3,4-dioxygenase, gentisate 1,2-dioxygenase, azobenzene reductase, naphthalene 1,2-dioxygenase, benzoate/toluate 1,2-dioxygenase, and anthranilate 1,2-dioxygenase and so on were found in the metagenome of the consortium BCGR-T. Finally, a new decolorization pathway of the thermophilic consortium BCGR-T was proposed. In addition, the phototoxicity of BCGR decreased after decolorization. Overall, the thermophilic consortium BCGR-T could be a promising candidate in the treatment of high concentration azo dye wastewater at high temperatures.


Assuntos
Dioxigenases , NAD , Naftalenossulfonatos , NADP , Biodegradação Ambiental , Compostos Azo , Corantes
12.
Proc Natl Acad Sci U S A ; 121(14): e2321611121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547058

RESUMO

Malignant glioma exhibits immune evasion characterized by highly expressing the immune checkpoint CD47. RNA 5-methylcytosine(m5C) modification plays a pivotal role in tumor pathogenesis. However, the mechanism underlying m5C-modified RNA metabolism remains unclear, as does the contribution of m5C-modified RNA to the glioma immune microenvironment. In this study, we demonstrate that the canonical 28SrRNA methyltransferase NSUN5 down-regulates ß-catenin by promoting the degradation of its mRNA, leading to enhanced phagocytosis of tumor-associated macrophages (TAMs). Specifically, the NSUN5-induced suppression of ß-catenin relies on its methyltransferase activity mediated by cysteine 359 (C359) and is not influenced by its localization in the nucleolus. Intriguingly, NSUN5 directly interacts with and deposits m5C on CTNNB1 caRNA (chromatin-associated RNA). NSUN5-induced recruitment of TET2 to chromatin is independent of its methyltransferase activity. The m5C modification on caRNA is subsequently oxidized into 5-hydroxymethylcytosine (5hmC) by TET2, which is dependent on its binding affinity for Fe2+ and α-KG. Furthermore, NSUN5 enhances the chromatin recruitment of RBFOX2 which acts as a 5hmC-specific reader to recognize and facilitate the degradation of 5hmC caRNA. Notably, hmeRIP-seq analysis reveals numerous mRNA substrates of NSUN5 that potentially undergo this mode of metabolism. In addition, NSUN5 is epigenetically suppressed by DNA methylation and is negatively correlated with IDH1-R132H mutation in glioma patients. Importantly, pharmacological blockage of DNA methylation or IDH1-R132H mutant and CD47/SIRPα signaling synergistically enhances TAM-based phagocytosis and glioma elimination in vivo. Our findings unveil a general mechanism by which NSUN5/TET2/RBFOX2 signaling regulates RNA metabolism and highlight NSUN5 targeting as a potential strategy for glioma immune therapy.


Assuntos
5-Metilcitosina , 5-Metilcitosina/análogos & derivados , Proteínas de Ligação a DNA , Dioxigenases , Glioma , Proteínas Musculares , Humanos , 5-Metilcitosina/metabolismo , beta Catenina/metabolismo , Cromatina , Antígeno CD47/genética , RNA , Evasão da Resposta Imune , Glioma/patologia , RNA Mensageiro/metabolismo , Metiltransferases/metabolismo , RNA Nuclear Pequeno , Microambiente Tumoral , Fatores de Processamento de RNA/genética , Proteínas Repressoras/metabolismo
13.
Semin Hematol ; 61(1): 51-60, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38431463

RESUMO

Loss of function TET2 mutation (TET2MT) is one of the most frequently observed lesions in clonal hematopoiesis (CH). TET2 a member TET-dioxygenase family of enzymes that along with TET1 and TET3, progressively oxidize 5-methyl cytosine (mC) resulting in regulated demethylation of promoter, enhancer and silencer elements of the genome. This process is critical for efficient transcription that determine cell lineage fate, proliferation and survival and the maintenance of the genomic fidelity with aging of the organism. Partial or complete loss-of-function TET2 mutations create regional and contextual DNA hypermethylation leading to gene silencing or activation that result in skewed myeloid differentiation and clonal expansion. In addition to myeloid skewing, loss of TET2 creates differentiation block and provides proliferative advantage to hematopoietic stem and progenitor cells (HSPCs). TET2MT is a prototypical lesion in CH, since the mutant clones dominate during stress hematopoiesis and often associates with evolution of myeloid malignancies. TET2MT clones has unique privilege to create and persist in pro-inflammatory milieu. Despite extensive knowledge regarding biochemical mechanisms underlying distorted myeloid differentiation, and enhanced self-replication of TET2MT HSPC, the mechanistic link of various pathogenesis associated with TET2 loss in CHIP is less understood. Here we review the recent development in TET2 biology and its probable mechanistic link in CH with aging and inflammation. We also explored the therapeutic strategies of targeting TET2MT associated CHIP and the utility of targeting TET2 in normal hematopoiesis and somatic cell reprograming. We explore the biochemical mechanisms and candidate therapies that emerged in last decade of research.


Assuntos
Hematopoiese Clonal , Dioxigenases , Humanos , Hematopoiese Clonal/genética , Mutação , Metilação de DNA , Diferenciação Celular/genética , Hematopoese/genética , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética
14.
BMC Womens Health ; 24(1): 188, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515066

RESUMO

BACKGROUND: Aberrant DNA methylation is a vital molecular alteration commonly detected in type I endometrial cancers (EC), and tet methylcytosine dioxygenase 2 (TET2) and 5-hydroxymethylcytosine (5hmC) play significant roles in DNA demethylation. However, little is known about the function and correlation of TET2 and 5hmC co-expressed in EC. This study intended to investigate the clinical significance of TET2 and 5hmC in EC. METHODS: The levels of TET2 and 5hmC were detected in 326 endometrial tissues by immumohistochemistry, and the correlation of their level was detected by Pearson analysis. The association between the levels of TET2 and 5hmC and clinicopathologic characteristics was analyzed. Prognostic value of TET2 and 5hmC was explored by Kaplan-Meier analysis. The Cox proportional hazard regression model was used for univariate and multivariate analyses. RESULTS: Based on the analysis results, TET2 protein level was positively correlated with 5hmC level in EC tissues (r = 0.801, P < 0.001). TET2+5hmC+ (high TET2 and high 5hmC) association was significantly associated with well differentiation, myometrial invasion, negative lymph node metastasis, and tumor stage in EC. Association of TET2 and 5hmC was confirmed as a prognostic factor (HR = 2.843, 95%CI = 1.226-3.605, P = 0.007) for EC patients, and EC patients with TET2-5hmC- level had poor overall survival. CONCLUSIONS: In summary, the association of TET2 and 5hmC was downregulated in EC tissues, and may be a potential poor prognostic indicator for EC patients. Combined detection of TET2 and 5hmC may be valuable for the diagnosis and prognosis of EC.


Assuntos
5-Metilcitosina , Carcinoma Endometrioide , Dioxigenases , Neoplasias do Endométrio , Feminino , Humanos , 5-Metilcitosina/análogos & derivados , Carcinoma Endometrioide/genética , Relevância Clínica , Dioxigenases/genética , Dioxigenases/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA
15.
EMBO J ; 43(8): 1570-1590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499787

RESUMO

Ten-eleven translocation (TET) proteins are dioxygenases that convert 5-methylcytosine (5mC) into 5-hydroxylmethylcytosine (5hmC) in DNA and RNA. However, their involvement in adult stem cell regulation remains unclear. Here, we identify a novel enzymatic activity-independent function of Tet in the Drosophila germline stem cell (GSC) niche. Tet activates the expression of Dpp, the fly homologue of BMP, in the ovary stem cell niche, thereby controlling GSC self-renewal. Depletion of Tet disrupts Dpp production, leading to premature GSC loss. Strikingly, both wild-type and enzyme-dead mutant Tet proteins rescue defective BMP signaling and GSC loss when expressed in the niche. Mechanistically, Tet interacts directly with Bap55 and Stat92E, facilitating recruitment of the Polybromo Brahma associated protein (PBAP) complex to the dpp enhancer and activating Dpp expression. Furthermore, human TET3 can effectively substitute for Drosophila Tet in the niche to support BMP signaling and GSC self-renewal. Our findings highlight a conserved novel catalytic activity-independent role of Tet as a scaffold protein in supporting niche signaling for adult stem cell self-renewal.


Assuntos
Dioxigenases , Proteínas de Drosophila , Drosophila melanogaster , Animais , Feminino , Humanos , Diferenciação Celular/genética , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo , Dioxigenases/metabolismo
16.
Sci Rep ; 14(1): 6481, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499584

RESUMO

The active DNA demethylation process, which involves TET proteins, can affect DNA methylation pattern. TET dependent demethylation results in DNA hypomethylation by oxidation 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) and its derivatives. Moreover, TETs' activity may be upregulated by ascorbate. Given that aberrant DNA methylation of genes implicated in breast carcinogenesis may be involved in tumor progression, we wanted to determine whether breast cancer patients exert changes in the active DNA demethylation process. The study included blood samples from breast cancer patients (n = 74) and healthy subjects (n = 71). We analyzed the expression of genes involved in the active demethylation process (qRT-PCR), and 5-mC and its derivatives level (2D-UPLC MS/MS). The ascorbate level was determined using UPLC-MS. Breast cancer patients had significantly higher TET3 expression level, lower 5-mC and 5-hmC DNA levels. TET3 was significantly increased in luminal B breast cancer patients with expression of hormone receptors. Moreover, the ascorbate level in the plasma of breast cancer patients was decreased with the accompanying increase of sodium-dependent vitamin C transporters (SLC23A1 and SLC23A2). The presented study indicates the role of TET3 in DNA demethylation in breast carcinogenesis.


Assuntos
Neoplasias da Mama , Dioxigenases , Humanos , Feminino , Desmetilação do DNA , Neoplasias da Mama/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem , 5-Metilcitosina/metabolismo , Metilação de DNA , Biomarcadores/metabolismo , DNA/metabolismo , Epigênese Genética , Leucócitos/metabolismo , Carcinogênese/genética , Dioxigenases/genética
17.
Environ Sci Technol ; 58(8): 3895-3907, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38356175

RESUMO

Volatilization of lower-chlorinated polychlorinated biphenyls (LC-PCBs) from sediment poses health threats to nearby communities and ecosystems. Biodegradation combined with black carbon (BC) materials is an emerging bioaugmentation approach to remove PCBs from sediment, but development of aerobic biofilms on BC for long-term, sustained LC-PCBs remediation is poorly understood. This work aimed to characterize the cell enrichment and activity of biphenyl- and benzoate-grown Paraburkholderia xenovorans strain LB400 on various BCs. Biphenyl dioxygenase gene (bphA) abundance on four BC types demonstrated corn kernel biochar hosted at least 4 orders of magnitude more attached cells per gram than other feedstocks, and microscopic imaging revealed the attached live cell fraction was >1.5× more on corn kernel biochar than GAC. BC characteristics (i.e., sorption potential, pore size, pH) appear to contribute to cell attachment differences. Reverse transcription qPCR indicated that BC feedstocks significantly influenced bphA expression in attached cells. The bphA transcript-per-gene ratio of attached cells was >10-fold more than suspended cells, confirmed by transcriptomics. RNA-seq also demonstrated significant upregulation of biphenyl and benzoate degradation pathways on attached cells, as well as revealing biofilm formation potential/cell-cell communication pathways. These novel findings demonstrate aerobic PCB-degrading cell abundance and activity could be tuned by adjusting BC feedstocks/attributes to improve LC-PCBs biodegradation potential.


Assuntos
Compostos de Bifenilo , Burkholderiaceae , Carvão Vegetal , Bifenilos Policlorados , Benzoatos , Biodegradação Ambiental , Carbono , Ecossistema , Bifenilos Policlorados/metabolismo , Dioxigenases/química , Dioxigenases/metabolismo
18.
J Dermatol Sci ; 113(3): 103-112, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331641

RESUMO

BACKGROUND: TET2 participates in tumor progression and intrinsic immune homeostasis via epigenetic regulation. TET2 has been reported to be involved in maintaining epithelial barrier homeostasis and inflammation. Abnormal epidermal barrier function and TET2 expression have been detected in psoriatic lesions. However, the mechanisms underlying the role of TET2 in psoriasis have not yet been elucidated. OBJECTIVE: To define the role of TET2 in maintaining epithelial barrier homeostasis and the exact epigenetic mechanism in the dysfunction of the epidermal barrier in psoriasis. METHODS: We analyzed human psoriatic skin lesions and datasets from the GEO database, and detected the expression of TET2/5-hmC together with barrier molecules by immunohistochemistry. We constructed epidermal-specific TET2 knockout mice to observe the effect of TET2 deficiency on epidermal barrier function via toluidine blue penetration assay. Further, we analyzed changes in the expression of epidermal barrier molecules by immunofluorescence in TET2-specific knockout mice and psoriatic model mice. RESULTS: We found that decreased expression of TET2/5-hmC correlated with dysregulated barrier molecules in human psoriatic lesions. Epidermal-specific TET2 knockout mice showed elevated transdermal water loss associated with abnormal epidermal barrier molecules. Furthermore, we observed that TET2 knockdown in keratinocytes reduced filaggrin expression via filaggrin promoter methylation. CONCLUSION: Aberrant epidermal TET2 affects the integrity of the epidermal barrier through the epigenetic dysregulation of epidermal barrier molecules, particularly filaggrin. Reduced TET2 expression is a critical factor contributing to an abnormal epidermal barrier in psoriasis.


Assuntos
Dioxigenases , Psoríase , Animais , Humanos , Camundongos , Dioxigenases/deficiência , Dioxigenases/genética , Dioxigenases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Proteínas Filagrinas , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Queratinócitos/metabolismo , Camundongos Knockout , Psoríase/patologia
19.
Chembiochem ; 25(8): e202400023, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363551

RESUMO

Cupin dioxygenases such as salicylate 1,2-dioxygense (SDO) perform aromatic C-C bond scission via a 3-His motif tethered iron cofactor. Here, transient kinetics measurements are used to monitor the catalytic cycle of SDO by using a nitro-substituted substrate analog, 3-nitrogentisate. Compared to the natural substrate, the nitro group reduces the enzymatic kcat by 500-fold, thereby facilitating the detection and kinetic characterization of reaction intermediates. Sums and products of reciprocal relaxation times derived from kinetic measurements were found to be linearly dependent on O2 concentration, suggesting reversible formation of two distinct intermediates. Dioxygen binding to the metal cofactor takes place with a forward rate of 5.9×103 M-1 s-1: two orders of magnitude slower than other comparable ring-cleaving dioxygenses. Optical chromophore of the first intermediate is distinct from the in situ generated SDO Fe(III)-O2⋅- complex but closer to the enzyme-substrate precursor.


Assuntos
Dioxigenases , Dioxigenases/química , Salicilatos , Oxigênio/química , Compostos Férricos , Metais , Especificidade por Substrato , Cinética
20.
Bioresour Technol ; 398: 130472, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387841

RESUMO

As toxic contaminants, aromatic compounds are widespread in most environmental matrices, and bioenzymatic catalysis plays a critical role in the degradation of xenobiotics. Here, a thermophillic aromatic hydrocarbon degrader Aeribacillus pallidus HB-1 was found. Bioinformatic analysis of the HB-1 genome revealed two ring-cleaving extradiol dioxygenases (EDOs), among which, EDO-0418 was assigned to a new subfamily of type I.1 EDOs and exhibited a broad substrate specificity, particularly towards biarylic substrate. Both EDOs exhibited optimal activities at elevated temperatures (55 and 65 °C, respectively) and showed remarkable thermostability, pH stability, metal ion resistance and tolerance to chemical reagents. Most importantly, simulated wastewater bioreactor experiments demonstrated efficient and uniform degradation performance of mixed aromatic substrates under harsh environments by the two enzymes combined for potential industrial applications. The unveiling of two thermostable dioxygenases with broad substrate specificities and stress tolerance provides a novel approach for highly efficient environmental bioremediation using composite enzyme systems.


Assuntos
Bacillaceae , Dioxigenases , Hidrocarbonetos Aromáticos , Dioxigenases/genética , Dioxigenases/química , Dioxigenases/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Metais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...